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a b s t r a c t

A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas
and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB)
reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR),
volumetric total chemical oxygen demand (TCOD) removal rate (RV), influent alkalinity, influent pH and
effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership
functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference
system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the
centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification
methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential
on-linear regression
odeling

non-linear regression models derived in this study. The UASB reactor showed a remarkable performance
on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (±3)% and
an average volumetric TCOD removal rate of 6.87 (±3.93) kg TCODremoved/m3-day, respectively. Find-
ings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO
fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance
on forecasting of both biogas and methane production rates with satisfactory determination coefficients

over 0.98.

. Introduction

Distillery effluents from sugar cane factories using molasses as
raw material are characterized by highly organically polluted
astewaters, and can have serious impacts on the environment if
isharge untreated. Molasses-based distilleries are one of the most
olluting industries generating large volumes of high-strength
astewater [1]. Apart from high organic content, distillery wastew-

ter also contains high concentration of nutrients in the form
f nitrogen (1660–4200 mg/L), phosphorus (225–3038 mg/L) and
otassium (9600–17,475 mg/L) [2] that can lead to eutrophica-
ion of receiving water bodies [1,3]. The raw molasses wastewater

s also characterized by moderately acidic (pH 4–5), very high
otal chemical oxygen demand (TCOD) (65,000–130,000 mg/L),
igh concentration of mineral salts and has a bad smell and dark
rown color as the melanoidin pigment [1,3–5]. This dark color
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hinders photosynthesis by blocking sunlight and is deleterious to
aquatic life [6]. Moreover, studies focused on the water quality of a
river contaminated with distillery effluent displayed high biological
oxygen demand (BOD) values of about 1600–21,000 mg/L within a
radius of 8 km [1,3,7]. Adequate treatment is therefore imperative
before the effluent is discharged [1,3,4,8].

With environmental regulations becoming more stringent, reg-
ulatory compliance has also become a matter of increasing concern
to the fermentation and food industries. Therefore, several types of
processes have recently been proposed for treating the molasses
wastewater to improve the quality of the final discharge in terms
of residual pollutant contents. Sirianuntapiboon and Prongtong
[9] have conducted studies on the removal of color substances in
molasses wastewater by using combined biological and chemical
treatment processes. The study concluded that color substances
can be removed by simple coagulants (such as CaO for stillage
and FeCl3 for anaerobic treated molasses wastewater (An-MWW)).
But to increase the color removal efficiency in coagulation step,
the authors suggested the pretreatment of molasses wastewa-

ter by aeration with or without sludge-added for about 96 h. In
another study conducted by Pena et al. [5], color removal from
biologically pretreated molasses wastewater by means of chem-
ical oxidation with ozone were explored. The study concluded
that ozonation was an effective treatment to remove color but
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ess effective to remove organic matter. The authors reported that,
epending on the applied ozone dosage, color removal from 71%
o 93% and TCOD reduction from 15% to 25% were reached after
0 min reaction time. In a recent study, Zhang et al. [4] pro-
osed a novel UASB–MFC–BAF (up-flow anaerobic sludge blanket
eactor–microbial fuel cell–biological aerated filter) integrated sys-
em for simultaneous bioelectricity generation and high-strength

olasses wastewater treatment. The study concluded that TCOD,
ulfate and color removal efficiencies of the proposed system were
chieved of 53.2%, 52.7% and 41.1%, respectively. Moreover, each
nit of this system had respective function and performed well
hen integrated together. Sirianuntapiboon and Prasertsong [10]

arried out investigations on the treatment of molasses wastew-
ter by acetogenic bacteria BP103 in a sequencing batch reactor
SBR) system. They used acetogenic bacteria BP103 cells as the
bsorbent for melanoidin pigment (MP) and molasses wastewater.
he study concluded that the strain showed the highest TCOD, BOD5
KN (total Kjedahl nitrogen) and MP removal efficiencies of 65.2%,
2.8%, 32.1% and 50.2% on average, respectively. In another recent
ork, Liang et al. [8] applied coagulation/flocculation process in

he polishing treatment of molasses wastewater on a bench-scale.
he study concluded that ferric chloride was found to be the
ost effective in removing melanoidins from bio-treated molasses
astewater, achieving color and TCOD removal efficiencies of

8% and 89%, respectively. Finally, Sohsalam and Sirianuntapiboon
3] applied a surface flow constructed wetland (SFCW) system
ith Cyperus involucratus, Typha augustifolia and Thalia dealbata

. Fraser to treat An-MWW under the organic loading rates (OLR)
etween 612 and 1213 kg BOD5/ha-day. The proposed SFCW sys-
em showed that the highest SS (suspeded solids), BOD, TCOD,
otal phosphorus, ammonia nitrogen, nitrate nitrogen and molasses
igments removal efficiencies of 90–93%, 88–89%, 67%, 70–76%,
7–82%, 94–95% and 72–77% were detected under the lowest OLR
f 612 kg BOD5/ha-day, respectively. Detailed information on sev-
ral other existing and advances methods applied to the treatment
f molasses-based distillery wastewater can be found in a compre-
ensive review of Satyawali and Balakrishnan [1].

In recent years, anaerobic digestion technology has become a
echnology of growing importance, especially for high-strength
astewater [11,12]. Although anaerobic digestion has been

egarded as one of the beneficial and advantageous processes, par-
icularly in treatment of highly polluted wastewaters, however this
ype of treatment is thought to be a difficult system due to its insta-
ility and complexity in solving this problem in a short time in a
eal-scale plant.

Modeling is a valuable tool in both design and operation of
iological treatment plants, and can be used for process optimiza-
ion and testing of control strategies at a reasonable cost. Hence,

odeling helps to develop a better understanding of the treat-
ent processes and provides a significant potential for solving

perational problems as well as reducing operational cost in a spe-
ific treatment process. Moreover, model results can be evaluated
or different operating data before transferring the concepts to a
ull scale plant [13]. In the literature, there are numerous stud-
es such as integral dynamic modeling of the UASB reactor [14],

athematical simulation of the sludge blanket of UASB reactor [15],
ynamic modeling of a singlestage high-rate anaerobic reactor [16],
nd mathematical modeling of a batch anaerobic digestion [17],
onducted about the comprehensive and complex models to con-
rol and simulate several anaerobic treatment systems. In a recent
tudy, Pontes and Pinto [18] conducted studies on the analysis of

ntegrated kinetic and flow (or hydraulic) models for two anaerobic
igesters, the UASB and the EGSB (expanded granular sludge bed)
eactors. In the study, the flow models were found to be quite differ-
nt for the UASB and EGSB reactors. Since many of the parameters
sed in the UASB reactor flow model can be critical for an accurate
Hazardous Materials 182 (2010) 460–471 461

simulation, the study concluded that the volume variations of the
sections of the UASB reactor were necessary to accurately describe
the behaviour of such digester in non-steady-state. Because of
the mechanisms associated with anaerobic processes are not ade-
quately understood to formulate reliably, many of conventional
models require simplifications of the process representation for a
better understanding of the underlying phenomena in anaerobic
digestion. Hence, more simple and useful models are required to
overcome complexity and applicability [19]. Biyikoglu et al. [20]
have reported that conventional numerical methods require much
time to obtain accurate results, and sometimes it is not possible to
reach a solution due to convergence problems regarding the type
of governing equations and boundary conditions.

The performance of anaerobic digestion processes is complex
and highly dependent on the configurations of the different reac-
tors, and varies significantly with different influent characteristics
and operational conditions [19,21]. Therefore, the system must be
continuously monitored and controlled due to its instability in cir-
cumstance conditions, particularly in terms of biogas or methane
production rates, providing an indication of the overall anaerobic
biomass activity in the process [22]. Since anaerobic digestion pro-
cess is very susceptible to fluctuations in process inputs such as
organic loading rates, influent pH, and toxic organic compounds,
biogas or methane production rates are highly dependent on the
applied process conditions. Therefore, the complicated interre-
lationships among a number of system factors in the process
may be explicated through a number of attempts in developing
a representative knowledge-based prediction model allowing the
investigation of the key variables in greater detail.

Because of their speed and capability of learning, robustness,
predictive capabilities and non-linear characteristics, several arti-
ficial intelligence-based modeling techniques, such as artificial
neural networks [23–26], fuzzy-logic [27,28], adaptive neuro-fuzzy
inference systems [19,29], have recently been conducted in the
modeling of various real-life processes in environmental engineer-
ing field. Among these methods, fuzzy-logic methodology has been
successfully applied in a variety of ecological and environmental
applications, ranging from mapping to modeling, evaluation and
prediction tasks [30]. Fuzzy-logic-based models have also been
conducted by many researchers as an established and promis-
ing method for modeling of various types of anaerobic processes
[31–39]. However, there are no systematic papers in the literature
specifically devoted to a study of an artificial intelligence-based
modeling of biogas and methane production rates in a pilot-scale
mesophilic UASB reactor treating molasses wastewater using the
fuzzy-logic technique. Such an artificial intelligence-based control
of real-time gas production rates may provide several potential
advantages such as protection of the system from possible risks
associated with significant fluctuations in influent characteris-
tics, optimization of the process at a reasonable cost, providing a
rapid evaluation and estimation of emissions on energetic basis,
and development of a continuous early-warning strategy with-
out requiring a complex model structure and tedious parameter
estimation procedures. Therefore, clarification of the place of the
present subject in the scheme of fuzzy-logic methodology can be
considered as a particular field of investigation to evaluate in real-
time biogas and methane production rates that are necessary to
control the anaerobic process and to establish fault diagnosis.

Considering the above-mentioned facts, the specific objectives
of this study were: (1) to develop a fast predicting MIMO (multi-
ple inputs and multiple outputs) fuzzy-logic-based model for the

estimation of biogas and methane production rates in a pilot-scale
mesophilic UASB reactor running under various organic, hydraulic
and alkalinity loading conditions; (2) to compare the proposed arti-
ficial intelligence-based model with the conventional non-linear
regression approach by means of various descriptive statistics; and
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3) to verify the validity of the MIMO fuzzy-logic model by several
dditional testing data sets which were not used in training the
odel.

. Materials and methods

.1. Source of molasses wastewater and feed preparation

Molasses was taken from a commercial sugar factory located
n Adapazari, Turkey and stored in the refrigerator at 4 ◦C to mini-

ize substrate decomposition before the experiment. The content
f molasses used as feedstock (in g/kg molasses) was Total Chemi-
al Oxygen Demand (TCOD): 800–900, ammonia nitrogen (NH3–N):
5–80, oxygen: 4–8, K+: 40–60, and Na+: 150–200, respectively.
eight percentages of other components in molasses (%) were

etermined as saccarose: 50, betaine: 5.5, K2O: 4.7, and others:
9.8, respectively.

Satyawali and Balakrishnan [1] have reported that although
he UASB system is the most popular high-rate digester that has
een utilized for anaerobic treatment of various types of indus-
rial wastewaters, however, dilution is required before treatment
ue to the presence of some inhibitory substances left in solu-
ion after pH correction. Therefore, the feed for UASB reactor
as prepared by diluting the predetermined amount of molasses
ith the desired quantity of tap water (1:10–1:3-fold). After the

cclimatization of seed culture, the dilution ratio was gradu-
lly decreased from 1:10 to 1:3 to increase organic loading rate
from about 2 to 17 kg TCOD/m3-day) and to study the effects
f different feed strengths on the digestion performance of the
eactor. Since molasses wastewater is characterized by moder-
tely acidic [4], the pH of the feed wastewater was adjusted
y the gradual addition of NaHCO3 (Merck Chemical Corp.), as
imilarly conducted by Gohil and Nakhla [40]. A nutrient solu-
ion/basal media containing essential micro and macro nutrients
or an optimum anaerobic microbial growth was also prepared
ith the following components, and added 1 mL/L of the daily fed

ubtrate at relatively high organic loading conditions [41]: 5 g/L
gSO4·7H2O, 6 g/L FeCl2·6H2O, 10 g/L CoCl2·6H2O, 1 mg/L H3BO3,
mg/L ZnSO4·7H2O, 1 mg/L CuSO4·5H2O, 100 mg/L MnCl2·6H2O,
mg/L (NH4)6Mo24·4H2O, 585 mg/L Al2(SO4)3·18H2O, and 1 g/L
a2SiO3·9H2O. It is noted that addition of other micronutrients

such as nickel and selenium) to the feed material in the form
f their salts may also play an important role on the growth of
icroorganisms and help to increase biogas production.

.2. UASB set-up and operation

The molasses wastewater was anaerobically treated in a pilot-
cale UASB reactor under different organic and hydraulic loading
onditions. The internal diameter, total height and total tank capac-
ty of the system were 20 cm, 190 cm and 90 L, respectively. All parts
f the reactor was made of ANSI 316 stainless steel. The reactor
ad a conical bottom of 20 cm length and a feed inlet pipe of about
.0 cm diameter to avoid chocking during operation. An outlet weir
as provided at the top (1.85 m), which was connected to an outlet
ipe to the effluent collection tank. The reactor was equipped with
ve sampling ports, localized at 0.30, 0.45, 0.60, 0.75 and 0.90 from
he bottom of the system. The diameter of each sampling port was
bout 1.5 cm.

Biogas was collected from the headspace on the top of the reac-

or via a gas collecting system. The gas collecting and measuring
ystem consisted of a gas–solid–liquid (GSL) separator (made from
nverted plastic funnels of 15 cm diameter), a gas collecting pipe, a
lass water trap used as hydrogen sulfide (H2S) scrubber and a wet-
ip gas meter. The reactor was kept under mesophilic conditions
f Hazardous Materials 182 (2010) 460–471

(35.2 ± 0.7 ◦C) by circulating the hot water through the external
reactor jacket with a Fisher Isotemp 2100 (Fisher Company, Pitts-
burgh) immersion circulator. Heated water was pumped through
the jacket surrounding the reactor and glass wool was used as an
isolation material.

Ward et al. [42] have reported that a certain degree of mixing
can be beneficial in terms of productivity, as well as of presenting
substrate to the bacteria. Although the low speed mixing conditions
allow the digester to better absorb the disturbance of shock loading
than did high speed mixing conditions, however, excessive mixing
can reduce methane production and disrupt the granule struc-
ture, reducing the rate of oxidation of fatty acids which can lead
to digester instability [43–45]. Moreover, Appels et al. [46] have
reported that proper auxiliary mixing prevents both the formation
of surface scum layers and the deposition of sludge on the bottom of
the tank. Therefore, considering the above-mentioned facts, reac-
tor contents were gently mixed by an adjustable low-speed top
mounted mixer shaft coupled with two stainless steel impellers
(ANSI 316) driven by a geared DC motor (0.25 kW, 60 rpm).

Depending on the feed flow rates (from 40.5 to 165.1 L/day),
the reactor was operated in a semi-continuous mode feeding (i.e.
twice an hour for 15 min) by pumping of the fresh feed into the
reactor and collecting effluent samples daily. The reactor was run
for a period of about 2 years under various organic and hydraulic
loading rates. Influent and effluent sampling was carried out once
the steady-state period was achieved. In feeding, different target
hydraulic retention times (HRTs) were achieved using a peristaltic
pump (ColeParmer, Masterflex®). Sufficient up-flow velocity was
maintained to achieve proper fluidization inside the reactor. During
the feeding of the reactor, the feeding tank was occasionally agi-
tated with a glass rod to prevent the sedimentation of suspended
solids, as well as to make the feeding solution homogeneous. In
order to increase the efficiency of the digestion process, the reac-
tor were seeded with anaerobic sludge (about 25% of the working
volume) taken from the Kartonsan Factory Anaerobic Treatment
Facility (Corlu, Istanbul, Turkey). A detailed schematic of the exper-
imental set-up is depicted in Fig. 1.

2.3. Representation of model parameters

Identification of parameters that could be used for monitoring
the biological treament system is an important factor for effi-
cient operation of the anaerobic digestion processes. Choosing the
most appropriate model components representing the behaviour
of the studied process can help to recognize possible technical
faults and to reduce operating costs of plants in the planning stage
[12,47]. There are several suggestions in the literature regarding
the choice of parameters [22]. On the basis of the existing experi-
mental data, several combinations of parameters were pre-trained
until the best input parameters and best fitting input structure were
developed. Following to preliminary computations, we selected
volumetric organic loading rate (OLR), volumetric Total Chemical
Oxygen Demand (TCOD) removal rate (RV), influent alkalinity, influ-
ent pH and effluent pH as the input parameters in our modeling
study. Biogas and methane production rates in the UASB reactor
were the output parameters of the proposed fuzzy-logic model. The
present model components, which are among the most widely used
and monitored parameters in the literature, are briefly discussed
below:

2.3.1. Effect of organic loading rate

The organic loading rate (OLR) is an important parameter signif-

icantly affecting microbial ecology and characteristics of anaerobic
systems. This parameter integrates the operational characteristics
of the reactor, and bacterial mass and activity into the volume of
media [48]. Verma [49] has reported that OLR is a measure of the
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Fig. 1. A detailed schema

iological conversion capacity of the anaerobic treatment system.
t depends on the technology used and on the type of wastewater
o be treated [22]. Satyawali and Balakrishnan [1] have reported
hat, depending on various anaerobic reactor configurations, a wide
ange of OLRs ranging from 0.6 to 86.4 kg TCOD/m3-day have been
uccessfully applied for treating molasses distillery wastewater.

.3.2. Effect of volumetric TCOD removal rate
The volumetric TCOD removal rate (RV) is a function of influ-

nt flow rate, working volume of the reactor, and the difference
etween influent and effluent substrate concentrations [50]. This

s an important parameter for biological treatment processes in
erms of a measure of substrate utilization efficiency and microbial

etabolic activity in real-time. It is clear from the literature that
igh RV values have been achieved in treatment of various organic-

aden wastewaters such as poultry manure wastewater [47], dairy
astewater [51], specifically with the use of anaerobic processes.

.3.3. Effect of alkalinity
Alkalinity refers to the ability of a solution to resist changes in

H. Alkalinity is important because as acid is added to solution,
arbonates will contribute hydroxide ions, which tend to neutral-

ze the acid. This is known as the buffering effect of alkalinity [52].
uffer capacity is a more reliable method of measuring digester

mbalance than direct measurements of pH, as an accumulation
f short chain fatty acids will reduce the buffering capacity sig-
ificantly before the pH decreases [42]. Moreover, it is noted that
the experimental set-up.

alkalinity is not only important for pH-regulation, but also as the
pool for CO2 in methane production. In general, sodium bicarbonate
is used for supplementing the alkalinity, as it is the only chemi-
cal that gently shifts the equilibrium to the desired value without
disturbing the bacterial activity [22].

2.3.4. Effect of pH
It has been determined that an optimum pH value for anaer-

obic treatment lies between 5.5 and 8.5 [49]. Methane bacteria
are very sensitive to pH value. They need a pH range between 6.5
and 7.8 whereas the acid-producing bacteria have optimum pH
value between 5 and 6 [53]. This is an important reason why some
designers prefer the separation of the hydrolysis/acidification and
acetogenesis/methanogenesis processes in two-stage processes
[42]. Liu et al. [54] have reported that the pH range is relative wide
in the plant scale and the optimal value of pH varies with substrate
and digestion technique.

2.3.5. Biogas and methane production rates
In any anaerobic digester, effectiveness of the process is usu-

ally represented in terms of biogas production rate [55]. The most
important step in the operation of biogas reactor is the control of the

digestion process to maximize the methane production from bio-
logical decomposition of organic matters in the waste. Decreases in
biogas yield and methane content are the potential indicators of an
unstable process condition in the anaerobic digestion. The stabil-
ity of the system should be attentively examined for the methane
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Fig. 2. A detailed schematic of the M

ontent below 65% [52]. The gas production rates provide an indi-
ation of the overall anaerobic biomass activity [22]. Therefore, in
his study, we selected biogas and methane production rates as the
utput parameters of the proposed models.

.4. Fuzzy-logic methodology

A general fuzzy system has basically four components: fuzzi-
cation, fuzzy rule base, fuzzy output engine, and defuzzification
56]. In fuzzification step, numerical inputs and output variables
re converted into linguistic terms or adjectives (such as low, high,
ig, small, etc.), and the corresponding degrees of the one or more
everal membership functions are determined [28]. Since mul-
iple measured crisp inputs first have to be mapped into fuzzy

embership functions, the fuzzification process requires good

nderstanding of all the variables [57]. Akkurt et al. [56] have
eported that fuzzy inference engine takes into account all the fuzzy
ules in the fuzzy rule base and learns how to transform a set of
nputs to corresponding outputs. Two kinds of inference operators,

inimization (min) and product (prod), are basically employed in
fuzzy system applied in this study.

this step [56,58]. In this study, we conducted the prod technique
due to its better performance in collection of all the relations among
inputs and outputs fuzzy sets in the fuzzy rule base.

Finally, in the defuzzification step, linguistic results obtained
from the fuzzy inference are translated into a real value by using
the rule base provided [20]. This phase is responsible for transform-
ing the fuzzy results from the fuzzy system into crisp values [58].
Akkurt et al. [56] have reported that there are many defuzzifica-
tion methods such as centre of gravity (COG or centroid), bisector
of area, mean of maxima, leftmost maximum, rightmost maxi-
mum, etc. As conducted by several researchers [28,56,57], in this
study, we employed centroid method which is most commonly
used defuzzification technique. It is expressed as follows [56,57]:

(y ) =
∑n

i=1�(yi)yi∑ (1)
i d n
i=1�(yi)

where (yi)d is the defuzzified output, yi is the output value (or the
centroidal distance from the origin) in the ith subset, and �(yi) is
the membership value of the output value in the ith subset. For the
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forecasting, there are two types of fuzzy inference systems,
namely, Mamdani-type [66] and Takagi-Sugeno-type [67] fuzzy
systems [62,68,69]. Because of allowing a simplified representation
and interpretation of the fuzzy rules, Mamdani’s fuzzy inference
method is the most commonly applied fuzzy methodology [61].
Fig. 3. Input and output variables con

ontinuous case, the summations in Eq. (1) are replaced by inte-
rals, as given by Sadiq et al. [59]. On the basis of above-mentioned
uzzy steps, a detailed schematic of the MIMO (multiple inputs and

ultiple outputs) fuzzy system applied in this study is depicted in
ig. 2.

The situations of uncertainties in fuzzy-logic are defined via giv-
ng appropriate membership functions to the elements of the set
hat represent the situation. The value of the variation between 0
nd 1 (the highest level) for each element is called membership
egree and its value in subset is called membership function [60].

n fuzzy models, the shape of membership functions of fuzzy sets
an be triangular, trapezoidal, bell-shaped, sigmoidal, or another
ppropriate form, depending on the nature of the system being
tudied [30,59,61]. Among them, triangular and trapezoidal shaped
embership functions are predominant in current applications of

uzzy set theory, due to their simplicity in both design and imple-
entation based on little information [62]. As suggested by others

63,64], in this study, we selected trapezoidal shaped membership
unctions for both input and output variables for optimal software
erformance. The scalar parameters of trapezoidal membership
unctions were adjusted until satisfactory outputs were obtained
ith respect to the set of rules used in the study, as similarly con-
ucted by Mitra et al. [63]. The trapezoidal curve is membership
unction of a vector, x, and depends on four scalar parameters, a, b,
, d, as follows [28,57,65]:

(x) = �(x; a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x ≤ a
x − a

b − a
, a ≤ x ≤ b

1, b ≤ x ≤ c
d − x

d − c
, c ≤ x ≤ d

0, d ≤ x

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2)

In this work, Fuzzy Logic Toolbox was used to create and to
dit the present Fuzzy Inference System (FIS) within the frame-
ork of MATLAB® V7.0. The steady-state data obtained from the

xperimental study were allocated into fuzzy sets to represent dif-
erent levels of crisp numerical variables. Input and output variables
ere built by using the FIS Editor, and fuzzified with trapezoidal
embership functions (trapmf). Fig. 3 illustrates input and output

ariables on the MATLAB® numeric computing environment. Each
nput variable and output variable had eight membership func-
ions namely A, B, C, D, E, F, G, and H. Some extreme values for
ach variable were also considered with their respective ranges to
nhance the prediction flexibility of the model. Organic loading rate
OLR) ranged from 1.9 to 16.7 kg TCOD/m3-day in X-axis. Fig. 4a

epicts the shape and range of each level for the first input vari-
ble. Volumetric TCOD removal rate (RV), the second input variable,
anged from 1.9 to 16.7 kg TCOD/m3-day, and the shape and range
f its membership functions are shown in Fig. 4b. Influent alkalin-
ty (ALKinf) and influent pH (pHinf), considered as the third and the
d for the present MIMO fuzzy model.

fourth input variables, ranged from 230 to 1950 mg CaCO3/L, and
from 4.0 to 7.4, respectively (Fig. 5a and b). The effluent pH (pHeff),
the fifth input variable, ranged from 6.4 to 7.6, and the shape and
range of membership functions for this input are depicted in Fig.
6c. Biogas production rate, output 1, ranged from 45 to 760 L/day in
X-axis. Fig. 6a presents the shape and range of each level for the first
output variable. Methane production rate were considered as out-
put 2, and ranged from 35 to 490 L/day, as shown in Fig. 6b. Table 1
summarizes the number of membership functions and their ranks,
trapmf[a b c d], for each of the input and output variables considered
in the present fuzzy sets.

In this study, a total of 134 rules were established with the
Fuzzy IF-THEN Rule Editor, and a decision from the combinations of
input membership functions (premise part or the antecedent block)
to output membership functions (consequent part) was made by
experience and the steady-state experimental data set. As an exam-
ple, Table 2 presents the rule base of 30 rule sets randomly selected
from the total 134 sets built on the MATLAB® environment.

In the applications of the fuzzy system in both control and
Fig. 4. Fuzzification of organic loading rate (OLR, kg TCOD/m3-day) and volumetric
TCOD removal rate (RV, kg TCOD/m3-day).
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2.6. Analytical procedure

T
N

ig. 5. Fuzzification of influent alkalinity (ALKinf, mg CaCO3/L), influent pH (pHinf)
nd effluent pH (pHeff).

his kind of system allows a simplified representation and interpre-
ation of the fuzzy rules, and the integration of expert knowledge
s thus easily realizable [70]. Therefore, as similarly conducted
y several researchers [56,61,65,70–73], in this study, we used a
amdani-type fuzzy inference system to implement IF-THEN rules

or prediction of both biogas and methane production rates.

.5. Non-linear modeling study

In this study, a non-linear modeling study was also carried out
o appraise the performance of the UASB reactor treating molasses
astewater by means of biogas and methane production rates.

he steady-state experimental data was evaluated by DataFit® sci-
ntific software (version 8.1.69, Copyright© 1995–2005 Oakdale
ngineering, RC167) containing 298 two-dimensional (2D) and
42 three-dimensional (3D) non-linear regression models. As sim-

larly done in our previous studies [12,13,47,74], in this study,
he non-linear regression analysis was conducted based on the
evenberg-Marquardt method with double precision. The exper-
mental data was imported directly from Microsoft® Excel used as

n open database connectivity data source, and then the non-linear
egression analysis was performed. As regression models were
olved, they were automatically sorted according to the goodness-
f-fit criteria into a graphical interface. Moreover, t-ratios and the

able 1
umber of membership functions and their ranks for each of the input and output variab

Membership functions Input variables

OLR RV ALKinf

A [−0.6 0.5 3.3 4.4] [−0.3 0.5 3.1 3.9] [−20 80 380 480]
B [3.3 4.4 5.3 6.3] [3.1 3.9 4.9 5.6] [380 480 580 720]
C [5.3 6.3 7.6 8.5] [4.9 5.6 6.8 7.7] [580 720 840 940]
D [7.6 8.5 9.7 10.5] [6.8 7.7 8.6 9.4] [840 940 1060 1160
E [9.7 10.5 11.6 12.4] [8.6 9.4 10.5 11.2] [1060 1160 1280 13
F [11.6 12.4 13.5 14.3] [10.5 11.2 12.3 13.0] [1280 1380 1510 16
G [13.5 14.3 15.6 16.3] [12.3 13.0 14.1 15.1] [1510 1600 1710 18
H [15.6 16.3 17.1 17.8] [14.1 15.1 16.9 17.9] [1710 1840 2060 21
Fig. 6. Fuzzification of biogas (Biogas, L/day) and methane (CH4, L/day) production
rates.

corresponding p values were determined to appraise the signif-
icance of the regression coefficients. Descriptive statistics of the
residual errors were also provided to better evaluate the model
performance. To determine the statistical significance of the pre-
dicted results, an alpha (˛) level of 0.05 (or 95% confidence) was
used in the non-linear modeling study.
Influent and effluent pH values were measured by a pH meter
(Thermo Orion 210). Total Chemical Oxygen Demand (TCOD),
volatile fatty acids (VFA) and alkalinity analyses were conducted

les considered in the present fuzzy sets.

Output variables

pHinf pHeff Biogas CH4

[3.3 3.5 4.3 4.5] [6.15 6.2 6.6 6.65] [−20 10 80 110] [0 20 50 70]
[4.3 4.5 4.8 5.0] [6.6 6.65 6.75 6.8] [80 110 170 230] [50 70 110 140]
[4.8 5.0 5.3 5.4] [6.75 6.8 6.85 6.9] [170 230 280 320] [110 140 170 190]

] [5.3 5.4 5.7 5.9] [6.85 6.9 7.0 7.05] [280 320 390 420] [170 190 230 260]
80] [5.7 5.9 6.2 6.3] [7.0 7.05 7.1 7.2] [390 420 490 510] [230 260 290 310]
00] [6.2 6.3 6.6 6.75] [7.1 7.2 7.25 7.3] [490 510 590 610] [290 310 350 370]
40] [6.6 6.75 7.1 7.2] [7.25 7.3 7.4 7.45] [590 610 690 710] [350 370 400 440]
90] [7.1 7.2 7.6 7.7] [7.4 7.45 7.75 7.8] [690 710 810 830] [400 440 540 580]
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Table 2
A random selection of 30 rule sets from the total 134 sets.

Input variables Output variables

OLR RV ALKinf pHinf pHeff Biogas CH4

A A D E B A A
A A D E C A A
A A C D B A A
A A C F A A A
A A B C C A A
A A C B B A A
A A A B B B B
A A A B A A A
A A B B A A B
A A C A B B B
C C E C C B B
C C F H D D D
C C B A D E E
G G A A D F F
A A C B A B B
A A B B B B B
A A C B A B B
B B A A A B B
B B A A B B B
B B A B A B B
B B A A A B B
B B B B A B B
B B F B B B B
D D B B C C C
D D B B D C C
F F H C G E F

b
g
t
a
a
w
o
e
t
r
a

3

3

(
7
b
(
e
l
w

d
D
w
c
5
(
w
a
a
f

F F G C G E G
F F H C G E G
F G E D D F F
H H D D D G H

y the procedures described in the Standard Methods [75]. Bio-
as produced in the reactor was measured continuously by a drum
ype Ritter wet-tip gasmeter (Ritter Apparatebau GmbH & Co.),
nd biogas composition was determined by using a portable Orsat
pparatus. Stability of the treatment process and components of
astewater samples were monitored in the Civil Engineering Lab-

ratory at Yildiz Technical University in Istanbul, Turkey. Each
xperiment was performed in triplicate and repeated at least three
imes to observe the reproducibility, and experimental results were
eported as the mean value of each parameter with standard devi-
tion.

. Results and discussion

.1. UASB process

On the basis of the cross-sectional area of the reactor
314.16 cm2) and applied feed flow rates (40.5–165.1 L/day, mean:
3.4 (±34) L/day), hydraulic loading rates (LH) were controlled
etween 1.29 and 5.26 m3/m2-day, with an average value of 2.34
±1.09) m3/m2-day. The UASB reactor were conducted with differ-
nt HRTs between 0.36 and 1.48 days. Imposed volumetric organic
oading rates (OLR) ranged from 1.95 to 16.56 kg TCOD/m3-day,

ith a mean value of 7.40 (±4.26) kg TCOD/m3-day.
Depending on various organic and hydraulic loading conditions,

aily biogas production rates ranged between 46 and 753 L/day.
aily methane (CH4) production rates ranged from 36 to 490 L/day
ith a mean value of about 160 L/day. Percentages of the typi-

al components in biogas, such as CH4 and CO2, ranged between
0–70% and 16–44%, with mean values of about 68 (±6)% and 27

±5)%, respectively. Moreover, high volumetric TCOD removals (RV)
ere achieved between 1.85–15.97 kg TCODremoved/m3-day, with

n average value of 6.87 (±3.93) kg TCODremoved/m3-day. Result
lso showed that the rounded TCOD removal percentages ranged
rom 84 to 98%, with an average value of 93 (±3)%.
Hazardous Materials 182 (2010) 460–471 467

The average values of influent and effluent pH were about 5.01
(±0.20) and 6.82 (±0.21), respectively. The increase in pH can be
attributed to the anaerobic bio-convertion of amino acids contained
in feed wastewater to ammonia [11,47]. During the experimen-
tal study, influent alkalinity ranged from 240 to 1940 mg CaCO3/L,
and the average increase in alkalinity across the UASB reactor was
determined to be about 1280 mg CaCO3/L. The increase in alkalinity
can be ascribed to the degradation of proteins in molasses wastew-
ater by anaerobic treatment, which resulted in generation of
alkalinity due to the reaction of ammonia with carbon dioxide and
water, as similarly reported by others [40,76]. Alkalinity increase in
the UASB reactor averaged about 0.20 mg CaCO3/mg TCODremoved
during the continuous experimental period. This is comparable
to the value of 0.17 mg CaCO3/mg TCODremoved reported by Gohil
and Nakhla [40]. The stability of the anaerobic system was also
monitored using the ratio of VFA:alkalinity. The steady-state data
indicated that the average effluent VFA:alkalinity ratio was about
0.13, which was less than 0.4 as similarly observed by several
authors [77–79].

Mudunge [80] has reported that at steady-state the daily mass
of influent TCOD (MSi) is equal to the daily mass of TCOD leav-
ing the system by means of the daily mass of effluent COD (MSe),
the daily mass of COD in discharged sludge (MSx), the daily mass of
digested sludge (MSd), and the daily mass of oxidised sludge (MSo).
MSe and MSx are contained in the effluent wastewater (TCODout),
while the daily mass of oxidised sludge (MSo) is incorporated into
the biomass. For anaerobic bacteria, the growth rate is very slow
that this amount is negligible [11]. On the basis of the present
steady-state experimental data, the mole of methane in biogas was
calculated using the well-known ideal gas equation, and then theo-
retical TCOD of methane was determined for its oxygen equivalent,
as conducted by Yetilmezsoy and Sakar [11]. The present TCOD
mass balance revealed that over 92% of influent organic matters
imposed to the system were transformed to biogas on average.
A linear regression showed a good agreement between the daily
mass of influent TCOD and the daily mass of efffluent TCOD, with a
high determination coefficient of R2 = 0.8409. In addition, the value
of adjusted determination coefficient (Ra

2 = 0.8397) was also very
high, showing a high significance of the TCOD mass balance. More-
over, a high value of the correlation coefficient (R = 0.9170) signified
a noticeable correlation between the mass of influent and effluent
TCOD values.

Consequently, the molasses wastewater was satisfactorily
treated by means of a high-rate anaerobic process, specifically
with the use of UASB reactor. Although relatively high incoming
OLRs were imposed to the system, the UASB reactor demonstrated
a stable performance on the anaerobic treatability of molasses
wastewater, and no process failure was recorded. This should
be due to acclimatization of both acidogens and methanogens
to the gradual flow regime after a well controlled adaptation
period.

3.2. Prediction of biogas and methane production rates

In this work, the developed MIMO fuzzy-logic-based model
and the non-linear regression analysis-based model were applied
to predict biogas and methane production rates obtained from
the steady-state experimental data. In the non-linear study, one
exponential model and two first-order polynomial models were
obtained for prediction of both biogas and methane production

rates. Results are summarized in Table 3.

Regression variable results including standard error, the t-
statistics and the corresponding p values for the best-fit model are
summarised in Table 4. The best-fit models defined as a function
of five process variables [Biogas (Y1) or methane (Y2) = f(OLR, RV,
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Table 3
Summary of non-linear regression results for prediction of both biogas and methane production rates.

Rank Model SEE SR RA RSS R2 Ra
2 NNI

Prediction of biogas production rate (output 1)
1 exp(ax1 + bx2 + cx3 + dx4 + ex5 + f ) 52.46 −192.38 −1.44 352228.46 0.8899 0.8856 6
2 ax1 + bx2 + cx3 + dx4 + ex5 + f 55.66 7.2 × 10−11 5.3 × 10−13 396607.93 0.8761 0.8712 11
3 ax1 + bx2 + cx3 + dx4 + ex5 59.80 −61.31 −0.46 0.8558 0.8513 1

Prediction of methane production rate (output 2)
1 exp(ax1 + bx2 + cx3 + dx4 + ex5 + f ) 31.82 −101.95 −0.76 129677.34 0.9053 0.9016 5
2 ax1 + bx2 + cx3 + dx4 + ex5 + f 34.96 1.4 × 10−10 1.04 × 10−12 156410.52 0.8858 0.8813 11
3 ax1 + bx2 + cx3 + dx4 + ex5 39.12 −48.80 −0.36 197439.56 0.8558 0.8513 11

SEE, standard error of the estimate; SR, sum of residuals; RA, residual average; RSS, residual sum of squares; R2, coefficient of multiple determination; Ra
2, adjusted coefficient

of multiple determination; NNI, number of non-linear iterations.

Table 4
Model components and regression variable results for the best-fit models.

Independent and original variables SEa t-Ratio p value

Y1 = exp[0.0062(OLR) + 0.1097(RV ) + 0.000104(ALKinf) − 0.102(pHinf) + 0.474(pHeff) + 1.72]
x1 = OLR (kg TCOD/m3-day) 3.673 × 10−2 0.1678 0.86698
x2 = RV (kg TCODremoved/m3-day) 3.862 × 10−2 2.8408 0.00524b

x3 = ALKinf (mg CaCO3/L) 5.741 × 10−5 1.8233 0.07058
x4 = pHinf 3.292 × 10−2 −3.098 0.00239b

x5 = pHeff 0.1162 4.0781 0.00008b

Y2 = exp[−0.0596(OLR) + 0.1696(RV ) + 0.00022(ALKinf) − 0.142(pHinf) + 0.618(pHeff) + 0.51]
x1 = OLR (kg TCOD/m3-day) 3.482 × 10−2 −1.7109 0.08952b

x2 = RV (kg TCODremoved/m3-day) 3.648 × 10−2 4.6490 0.00001b

x3 = ALKinf (mg CaCO3/L) 5.218 × 10−5 4.2901 0.00003b

x = pH 0.0296 −4.7889 0.00000b
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cated that the rounded TCOD removal percentages ranged from
87% to 97%, with an average value of 93 (±2.6)%. The influent
and effluent pH averaged about 4.96 (±0.78) and 6.81 (±0.22),
respectively (Fig. 8b). The influent alkalinity ranged from 270 to
4 inf

x5 = pHeff

a Standard error.
b p values < 0.05 were considered to be significant.

LKinf, pHinf, pHeff)] are given in the following equations:

1 = exp[0.0062(OLR) + 0.1097(RV) + 0.000104(ALKinf)

−0.102(pHinf) + 0.474(pHeff) + 1.72] (3)

2 = exp[−0.0596(OLR) + 0.1696(RV) + 0.00022(ALKinf)

−0.142(pHinf) + 0.618(pHeff) + 0.51] (4)

The larger t-ratio indicates the more significant parameter in
he regression model. Moreover, the variable with the lowest p
alue is considered the most significant [12]. Based on t-ratios
nd p values given in Table 3, volumetric TCOD removal rate and
ffluent pH had more importance than the OLR, influent alkalinity
nd influent pH for the derived exponential models in prediction
f both biogas and methane production rates. In this study, the
IMO fuzzy-logic-based model was developed based on a total

f 134 rules in the IF-THEN format and tested with 40 differ-
nt experimental data, used as the testing set, randomly selected
rom the remaining steady-state data set. Briefly, about 77% of
he total steady-state experimental data was used as the learn-
ng set based on a total of 134 rules, and the remaining (about
3% of the total) was used as the testing set (a total of 40 rules)
o verify the prediction performance of the proposed the MIMO
uzzy-logic-based model. Fig. 7 shows a head-to-head comparison
f performance for experimental data, fuzzy-logic testing out-
uts and the regression model outputs by means of biogas and
ethane production rates. Moreover, variations of other variables

organic loading rate and volumetric TCOD removal rate, influent

H and effluent pH, and influent and effluent alkalinity) in the
esting set are depicted in Fig. 8. In the testing set, the average
alues of imposed volumetric organic loading rates and volumetric
COD removals were about 7.25 (±4.74) kg TCOD/m3-day and 6.74
±4.39) kg TCODremoved/m3-day, respectively (Fig. 8a). Result indi-
0.1069 5.7822 0.00000b
Fig. 7. A head-to-head comparison of performance for experimental data, fuzzy-
logic testing outputs (responses for 40 different experimental data used as the
testing set) and the regression model outputs by means of biogas (a) and methane
(b) production rates.
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Table 5
Descriptive performance indices corresponding to the testing data of each model.

Estimator Testing data used in the modeling study

Biogas production rate Methane production rate

FLMa NRMb FLMa NRMb

R2 0.9847 0.8721 0.9848 0.8935
R 0.9675 0.9104 0.9676 0.9216
a 0.9536 0.8469 0.9797 0.8626
b 12.898 41.937 3.5422 25.965
Mean (measured, L/day) 241.475 241.475 161.55 161.55
Mean (predicted, L/day) 243.163 246.436 161.81 165.315
MAE (L/day) 18.34 41.16 11.36 30.09
MB (L/day) 1.688 4.961 0.2575 3.7647
RMSE (L/day) 23.64 66.47 15.33 40.92
RMSES (L/day) 8.74 28.72 2.54 17.48
RMSEU (L/day) 21.96 59.94 15.12 36.99
PSE 0.1583 0.2296 0.02811 0.2232
IA 0.9957 0.9637 0.9961 0.9698
FB −0.00696 −0.02034 −0.00159 −0.02304
FV 0.03982 0.09768 0.01288 0.09144

1
t
(
a

F
v
e

FA2 0.9699

a Fuzzy-logic model.
b Non-linear regression model.
840 mg CaCO3/L, and the average increase in alkalinity across
he UASB reactor was determined to be about 1193 mg CaCO3/L
Fig. 8c). Moreover, the alkalinity increase in the UASB reactor aver-
ged about 0.22 mg CaCO3/mg TCODremoved in the testing set. The

ig. 8. Variations of other variables in the testing set; (a) organic loading rate and
olumetric TCOD removal rate, (b) influent pH and effluent pH, and (c) influent and
ffluent alkalinity.
0.9456 0.9942 0.9432

testing data also revealed that the average effluent VFA:alkalinity
ratio was about 0.12, which was less than 0.4 as previously observed
in the learning set.

Finally, in order to describe the overall performance of the
proposed models, results were assessed with various descriptive
statistics such as coefficient of determination (R2), correlation coef-
ficient (R), mean-absolute error (MAE), root mean-square error
(RMSE), systematic and unsystematic RMSE (RMSES and RMSEU,
respectively), index of agreement (IA), mean bias (MB), fractional
bias (FB), the factor of two (FA2), fractional variance (FV), intercept
(a) and slope (b) of the adjusted line between observed and pre-
dicted values, and proportion of systematic error (PSE). Detailed
definitions and calculations of these estimators can be found in sev-
eral studies [19,26,81–84]. The obtained results are summarized in
Table 5.

The obtained PSE, IA and MB values were in line with those
reported by others [18,78]. Present FB and FV values were also
in agreement with the values reported by Agirre-Basurko et al.
[82]. However, it is noted that differences between the present
results and other findings may be ascribed to the characteris-
tics of studied input vectors and mean-squared error performance
index, as well as to non-linear nature of the problems. As seen in
Table 5, descriptive performance indices such as MAE, RMSE, FV,
revealed that the fuzzy-logic-based model produced smaller devia-
tion and exhibited a superior predictive performance on forecasting
of both biogas and methane production rates compared to non-
linear regression model. The value of determination coefficients
(R2 = 0.9847 and 0.9848) indicated that only 1.53% and 1.52% of the
total variations were not explained by the fuzzy model in prediction
of biogas and methane production rates, respectively. However, for
the non-linear regression model, about 12.79% and 10.65% of total
variations did not fit the experimental data in estimation of bio-
gas and methane production rates, respectively. Results showed
that the non-linear regression did not yield satisfactory predic-
tions of gas production rates as good as the fuzzy model. This
can be attributed to the advantage of artificial intelligence-based
models on complex interactions between multi-input and output
variables in a complex system, such as anaerobic digestion pro-

cess. The linear regression between the fuzzy-logic testing outputs
and the corresponding targets indicated that the forecasted data
were obviously agreed with the experimental data compared to
non-linear regression model. Consequently, it can be concluded
that the proposed MIMO fuzzy-logic model can be a good alter-



4 rnal o

n
t
t
d
d

4

m
o
c
r
d
o
f
(
c

s
c
o
m
M
w
e
t
t
p
t
c
r

p
p
r
o
d
i
f
a
m
c
w
r
e
s

m
l
d
t
c
s
t
o

A

T
i
F
s

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

70 F.I. Turkdogan-Aydınol, K. Yetilmezsoy / Jou

ative to the conventional multiple regression-based method due
o its ability to precisely discriminate the arbitrary non-linear func-
ional relationships without requiring a mathematical model to
efine complex biochemical reactions between input and output
ata sets.

. Conclusions

The pilot-scale UASB reactor showed a noticeable perfor-
ance on the treatment of molasses wastewater under various

rganic and hydraulic loading conditions. TCOD removal efficien-
ies ranged between 84% and 98%, and high volumetric TCOD
emoval rates (RV) ranging from 1.85 to 15.97 kg TCODremoved/m3-
ay) were achieved. TCOD mass balance revealed that over 92%
f influent organic matters imposed to the system were trans-
ormed to biogas on average. Although relatively high OLRs
1.95–16.56 kg TCOD/m3-day) were imposed to the system, no pro-
ess failure was observed.

On the basis of the experimental findings, a real-world modeling
tudy was conducted as an important objective to develop an artifi-
ial intelligence-based model that could make a reliable prediction
n both biogas and methane production rates. For five different
odel components (OLR, RV, ALKinf, pHinf, pHeff) the proposed
IMO fuzzy-logic model showed precise and effective predictions
ith satisfactory correlation coefficients over 0.96. Moreover, two

xponential non-linear regression models were also developed as
he best-fit models to appraise the performance of the UASB reac-
or treating molasses wastewater by means of biogas and methane
roduction rates. Non-linear regression variable results showed
hat RV and effluent pH had more importance than other model
omponents in prediction of both biogas and methane production
ates.

Descriptive performance indices clearly indicated that the pro-
osed MIMO fuzzy-logic-based model showed a superior predictive
erformance on forecasting of both biogas and methane production
ates compared to non-linear regression model. The applicability
f the fuzzy-logic model is very simple and there is no need to
efine the complex reactions and their mathematical or biochem-

cal equations. Moreover, due to highly non-linear structure of the
uzzy-logic model model, it was shown that a complex system such
s anaerobic digestion could be easily modelled. Since fuzzy-logic
ethodology gave encouraging estimation results for the online

ontrol of a pilot-scale system, it is believed that this kind of model
ill help the control engineer to evaluate in real-time production

ates that are necessary to control the anaerobic process and to
stablish fault diagnosis before transferring the concepts to a full
cale plant.

On the basis of the advantages of artificial intelligence-based
odeling approach, for future studies, an improved MIMO fuzzy-

ogic-based model, including additional inputs and outputs, will be
eveloped to estimate parameters that are not measured on-line in
he process, as well as to evaluate the effects of unexpected input
hanges on the outputs. Furthermore, different types of member-
hip functions and their combinations will also be tested to enhance
he prediction performance of the proposed diagnosis system based
n fuzzy-logic.
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